Exercise 77

For the following exercises, write the polynomial function that models the given situation.
A square has sides of 12 units. Squares $x+1$ by $x+1$ units are cut out of each corner, and then the sides are folded up to create an open box. Express the volume of the box as a function in terms of x.

Solution

Draw a schematic of the cut-out box.

The area of the box's base is the new length times the new width.

$$
\begin{aligned}
A & =[12-2(x+1)][12-2(x+1)] \\
& =(12-2 x-2)(12-2 x-2) \\
& =(10-2 x)(10-2 x) \\
& =100-40 x+4 x^{2}
\end{aligned}
$$

Multiply it by the box's height to get the volume.

$$
\begin{aligned}
V=A h & =\left(100-40 x+4 x^{2}\right)(x+1) \\
& =\left(100-40 x+4 x^{2}\right) x+\left(100-40 x+4 x^{2}\right)(1) \\
& =100 x-40 x^{2}+4 x^{3}+100-40 x+4 x^{2} \\
& =4 x^{3}-36 x^{2}+60 x+100
\end{aligned}
$$

